- Sorahan T, Cathcart M. Lung cancer mortality among workers in a factory manufacturing chlorinated toluenes: 1961-84. Br J Ind Med 1989; 46: 425-427.
- Wong O. A cohort mortality study of employees exposed to chlorinated chemicals. Am J Ind Med 1988; 14: 417-431.
- Yasuo K, Fujimoto S, Katoh M, Kikuchi Y, Kada T. Mutagenicity of benzotrichloride and related compounds. Mutat Res 1978; 58: 143-150.

塩化ベンジル *C₆H₅CH₂Cl [CAS No. 100-44-7] 発がん物質分類 第2群A

- 1. 別名:αクロロトルエン,塩化αトリル,クロロメ チルベンゼン
- 2. 外観:刺激臭のある無色の液体. 分子量126.6
- 3. 用途:染料中間体,合成樹脂,香料等の有機合成原料¹⁾

4. 実験動物における発がん性

BD-ラット(性別不明)に塩化ベンジル 40または 80 mg/kgを1回/週× 51週反復皮下注射した実験では, 40 mg群では 3/14, 80 mg群では 6/8 に注射部に肉腫の発生をみた $^{2)}$.

A/Heマウス(雄+雌)に塩化ベンジル0.6, 1.5, 2.0 g/kg ϵ 8, 12, 12 回に分別して, 24 週にわたって腹腔内投与(従って平均75 mg/kg×8 回/24 週, 125 mg/kg×12 回/24 週, 167 mg/kg×12 回/24 週)した実験では肺腫瘍の増加は観察されなかった 3 .

マウスに塩化ベンジルを $2.5 \,\mathrm{mg/m} \times 3 \,\mathrm{m/m} \times 4 \,\mathrm{m} + 2 \,\mathrm{m/m} \times 25 \,\mathrm{m}$ (計 $29 \,\mathrm{m}$) 反復皮膚塗布した実験では、 $3/20 \,\mathrm{kc}$ に皮膚がん、 $2/20 \,\mathrm{kc}$ に肺腺腫(対照群 $0/20 \,\mathrm{kc}$ び 2/20 : 従って皮膚がんのみ有意に増加)の発生を認めた4.

5. 職業性がんの疫学

塩素化トルエン製造工程に従事し、各種塩素化トルエンと塩化ベンゾイル(C_6H_5 COCI)に対する曝露を受けていた作業者 953名を対象にした疫学調査 51 では、職種から判断して相対的に高濃度曝露を受けていたと推定される作業者(163名)の SMR は全がん 2.51、消化器のがん 4.03、呼吸器のがん 2.81 であり、低濃度曝露群 (790名)での SMR 1.34、1.15、1.28 に比して高値を示した(95%信頼区間は報告されていない)。

同じ作業者についてさらに長期間観察した結果⁶⁾では、高濃度曝露群の肺がんの SMR は3.3と上昇していたが、低濃度曝露群では1.4と上昇を認めなかった。非曝露者を曝露者と対応させた曝露者 - 非曝露者 26 対についてベンゾトリクロリド曝露、それ以外の塩素化トル

エン曝露, 喫煙習慣の寄与を比較したところ, 10年間の曝露に伴う前二者の相対危険比はそれぞれ1.32および1.31と上昇していたが喫煙(0.83)の寄与は有意ではなかった.

トルエンの塩素化工場で働く 697名の男子従業員を対象にした疫学調査⁷⁾ では全がんの SMR(95 %信頼区間の下限)は 1.22(0.59)で,骨のがん(18.16, 0.46),喉頭がん(8.74, 0.22),膀胱がん(6.45, 0.16),腎がん(4.68, 0.12),肺がん(2.22, 0.82)などで SMR の上昇を認めたが,下限はいずれも 1.00を下回っていた.

これらの3つの疫学調査の対象者はトルエンの塩素化工場で勤務しており、従って各種の塩素化トルエンおよび塩化ベンゾイルに対する混合曝露を受けていたと推定される.

6. 変異原性

ネズミチフス菌を用いた試験では菌株により異なる成績が得られており、TA 100株では S_9 -mix 非存在下に陽性 $^{8)}$ 、TA 98、TA 1535、TA 1537、TA 1538では存在・非存在下にいずれも陰性 $^{9,10)}$ 、CHO細胞を用いた染色体異常および姉妹染色分体交換試験では非存在下にいずれも陽性 $^{11)}$ と報告されている。

7. 発がん性分類の提案

職業性がんの疫学では塩素化トルエン合成工程での発がん性は認められるが、混合曝露であるためその発がん性が塩化ベンジルに起因するか否かについては確定出来ない.しかし動物実験では塩化ベンジルの発がん性が確認されており、変異原性も実験系によって陽性の所見が得られている.従って塩化ベンジルを第2群Aに分類することを提案する.

文 献

- 1) 化学工業日報社(編): 13901の化学商品,化学工業日報 社,2001.
- Druckrey H, Kruse H, Preussmann R, Ivankovic S, Landschuetz C. Cancerogene alkylierende substanzen III. Alkyl-halogenide, -sulfate, -sulfonate und ringgespannte heterocyclen. Z Krebsforsch 1970; 74: 241-270.
- Poirier LA, Stoner GD, Shimkin MB. Bioassay of alkyl halides and nucleotide base analogs by pulmonary tumor response in strain A mice. Cancer Res 1975; 35: 1411– 1415
- Fukuda K, Matsushita H, Sakabe H, Takemoto K. Carcinogenicity of benzyl chloride, benzal chloride, benzotrichloride and benzoyl chloride in mice by skin application. Gann 1981; 72: 655-664.
- Sorahan T, Waterhouse JAH, Cooke MA, Smith EMB, Jackson JR, Temkin L. A mortality study of workers in a factory manufacturing chlorinated toluenes. Ann Occup Hyg 1983; 27: 173-182.
- 6) Sorahan T, Cathcart M. Lung cancer mortality among workers in a factory manufacturing chlorinated toluenes:

1961-84. Br J Ind Med 1989; 46: 425-427.

- Wong O. A cohort mortality study of employees exposed to chlorinated chemicals. Am J Ind Med 1988; 14: 417-431.
- Neudecker T, Lutz D, Eder E, Henschler D. Structureactivity relationship in halogen and alkyl substituted allyl and allylic compounds: correlation of alkylating and mutagenic properties. Biochem Pharmacol 1980; 29: 2611-2617.
- Simmon VF. In vitro mutagenicity assays of chemical carcinogens and related compounds with Salmonella typhimurium. J Natl Cancer Inst 1979; 62: 893-899.
- 10) Watkins P, Rickard C. Mutagenic studies on benzyl chloride, 4-chloromethylbiphenyl and 4-hydroxymethyl-biphenyl with Salmonella typhimurium as part of the UKEMS trial. Mutat Res 1982; 100: 65-66.
- 11) Phillips BJ, James TEB. The effects of 4CMB, 4HMB and BC on SCE, chromosome aberration and point mutation in cultures of Chinese hamster ovary cells. Mutat Res 1982: 100: 263–269.

o-トルイジン C₇H₉N [CAS No. 95-53-4] 発がん物質分類 第2群A

- 1. 別名: 1-アミノ-2メチルベンゼン, 2-アミノトルエン, o-メチルアニリン
- 2. 外観:無色ないし淡黄色の液体,空気あるいは光に曝露すると赤褐色を帯びる. 分子量107.16

- 3. 用途:アゾ系および硫化系染料等の合成原料1)
- 4. 実験動物における発がん性

主要な実験とその所見を下記に要約する.

雌雄 $B6C3F_1$ マウスを本物質の塩酸塩 0, 1,000, 3,000 ppm添加飼料で102-103 週飼育した実験では濃度に対応して、雄に血管腫瘍(良性+悪性)(1/19, 2/50, 12/50; p<0.01) が、雌では肝腫瘍(良性+悪性)(0/20, 4/49, 13/50; p<0.01) が増加した 2).

雄の Sprague-Dawley ラットを最初の 3 カ月は本物質の塩酸塩 0, 8,000, 16,000 ppm 添加飼料,続く 15 カ月は 0, 4,000, 8,000 ppm 添加飼料で計 18 カ月間飼育した実験では,皮下線維腫瘍(良性+悪性)が濃度に対応して増加(0/16, 18/23, 21/24; p<0.05)した 30.

雄の Fischer 344 ラットを本物質の塩酸塩 0, 4,000ppm添加飼料で72週飼育し、さらに21週無添加飼料で飼育した実験では、皮膚の肉腫(1/27, 25/30; p<0.01)、脾臓の線維腫(0/27, 10/30; p<0.01)、乳腺線維腺腫(0/27, 11/30)、腹腔内肉腫(0/27, 9/30; p<0.01)の発生増加が認められた⁴⁾.

雌雄の Sprague-Dawley ラットを本物質の塩酸塩 0, 3,000, 6,000ppm添加飼料で 101-104 週飼育した実験では各種組織(主として皮下組織、脾臓および骨)の肉腫が、雄では 0/20, 15/50, 37/49 (p < 0.01), 雌では 0/20, 3/50, 21/49 (p < 0.01) と濃度に対応して増加した、雌ではさらに膀胱がん (0/20, 9/45, 22/47; p < 0.01), 乳腺腫瘍(良性+悪性)(7/20, 20/50, 35/49; p < 0.01) の増加も観察された 2

雄の Fischer 344/Nラットを本物質の塩酸塩 0,

表1 のトルイジン曝露による職業がん発生の疫学調査

報告者	職種	SMR (95%信頼区間)		SIR (
		全死亡	全がん	膀胱がん	膀胱がん
Rubino et	al. (1982) ⁸⁾	the second section of the second section of the second section of the second section s			to the transfer of the
	杂料合成	1.5 (1.4-1.7)	2.6	29.3	
0	-トルイジン曝露	(1.4-1.7)		62.5	
	77 1 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			(20.3-145.6)	
Ott and L	angner (1983) ¹⁰⁾		9		
	染料合成	1.0 (0.8–1.2)	1.3 (0.8-2.0)	0	
Stasik (19	988) ⁹⁾				
	-クロロ-o-トルイジ、	ン合成 1.1 (0.7-1.7)	1.4 (0.5-3.4)		72.7 (31.4–143.3)
Ward et a	<i>l.</i> ⁷⁾ (1991) ; Prince	e et al. (2000) 6)			
	ゴム用薬品合成	0.9 (0.8–1.0)	1.0 (0.7-1.3)	2.1 (0.3-7.6)	3.6 (2.0–6.2)
Sorahan e	t al. (2000) 11)		1 5 Y 41		
	ゴム用薬品合成	1.0 (0.9–1.1)	1.0 (0.9–1.1)	1.4 (0.8–2.2)	1.1 (0.6–1.7)