

Opinion/Recommendation

Occupational exposure limits for ethylene glycol monobutyl ether, isoprene, isopropyl acetate and propyleneimine, and classifications on carcinogenicity, occupational sensitizer and reproductive toxicant

The Committee for Recommendation of Occupational Exposure Limits, Japan Society for Occupational Health

Kenichi Azuma¹, Ginji Endo², Yoko Endo²⁷, Tetsuhito Fukushima³, Kunio Hara⁴, Hajime Hori⁵, Seichi Horie⁵, Hyogo Horiguchi⁶, Masayoshi Ichiba⁷, Gaku Ichihara⁸, Masayuki Ikeda⁹, Tatsuya Ishitake¹⁰, Akiyoshi Ito⁵, Yuki Ito¹¹, Satoko Iwasawa¹², Michihiro Kamijima¹¹, Kanae Karita¹³, Takahiko Katoh¹⁴, Toshio Kawai²⁷, Toshihiro Kawamoto⁵, Reiko Kishi¹⁵, Shinji Kumagai⁵, Yukinori Kusaka¹⁶, Akiko Matsumoto⁷, Muneyuki Miyagawa⁴, Hiroyuki Miyauchi⁵, Yasuo Morimoto⁵, Kasuke Nagano²⁷, Hisao Naito¹⁷, Tamie Nakajima¹⁸, Tetsuo Nomiyama¹⁹, Hirokazu Okuda²⁰, Kazuyuki Omae²¹, Haruhiko Sakurai²¹, Kazuhiro Sato¹⁶, Tomotaka Sobue²², Yasushi Suwazono²³, Toru Takebayashi^{21, ‡}, Tatsuya Takeshita²⁴, Akito Takeuchi², Ayano Takeuchi²¹, Masatoshi Tanaka³, Shigeru Tanaka²⁵, Teruomi Tsukahara¹⁹, Masashi Tsunoda¹², Susumu Ueno⁵, Jun Ueyama²⁶, Yumi Umeda²⁰, Yuko Yamano²⁸, Takenori Yamauchi²⁸ and Eiji Yano⁴

¹Kindai University, ²Japan Industrial Safety and Health Association, ³Fukushima Medical University, ⁴Teikyo University, ⁵University of Occupational and Environmental Health, Japan, ⁶Kitasato University, ⁷Saga University, ⁸Tokyo University of Science, ⁹Kyoto University, ¹⁰Kurume University, ¹¹Nagoya City University, ¹²National Defense Medical College, ¹³Kyorin University, ¹⁴Kumamoto University, ¹⁵Hokkaido University, ¹⁶University of Fukui, ¹⁷Fujita Health University, ¹⁸Chubu University, ¹⁹Shinshu University, ²⁰Japan Bioassay Research Center, ²¹Keio University, ²²Osaka University, ²³Chiba University, ²⁴Wakayama Medical University, ²⁵Jumonji University, ²⁶Nagoya University, ²⁷Independent Consultant, ²⁸Showa University and [‡], corresponding author

(J Occup Health 2017; 59: 364-366) doi: 10.1539/joh.17-0148-OP

Key words: ethylene glycol monobutyl ether, isoprene, isopropyl acetate, Occupational exposure limit, propyleneimine ether

Published online in J-STAGE June 26, 2017

Occupational Exposure Limits (OELs) for Chemical Substances

Ethylene glycol monobutyl ether [CAS No. 111-76-2], or 2-butoxyethanol, is a colorless liquid at room temperature (boiling temperature 171.2°C; saturated vapor pressure 0.76 mmHg (20°C)) with a gentle odor and is used as a solvent for paints, print inks, dyes, detergents, brake fluids, pesticides, and plasticizers. The Japan Society of Occupational Health (JSOH) proposes 20 ppm (97 mg/m³) as OEL-Ceiling (OEL-C) for ethylene glycol monobutyl ether based on human experience that no strong irritative symptom was observed at 20 ppm for 2 hours¹), while the symptom appeared when exposed to 98-195 ppm²). Exposure to concentrations below 20 ppm is expected to pre-

Received June 9, 2017; Accepted June 9, 2017

Correspondence to: T. Takebayashi, Department of Preventive Medicine and Public Health, School of Medicine, Keio University (e-mail: ttakebay ashi@keio.jp)

vent hemolytic anemia and to minimize reproductive toxicity. A skin absorption notation and reproductive toxicant classification of group 2 are proposed.

Isoprene [CAS No. 78-79-5] is an odiferous, colorless, volatile liquid (boiling temperature 34°C; saturated vapor pressure 53.2 kPa (20°C) used as a raw material for producing synthetic and natural rubber, polyisobutylene, and butyl rubber. It is inflammable and may form explosive peroxide if polymerized in the presence of heat or various chemicals. The JSOH proposes 3 ppm (8.4 mg/m³) as the OEL-Mean (OEL-M) for isoprane based on toxicity testing results. No-observed-adverse-effect-level (NOAEL) in mice was considered 10 ppm based on observed pathological changes: increase in spinal degeneration at or above 70 ppm within a recovery period in male after 26week inhalation (70-7000 ppm)³⁻⁵⁾, increased incidence of Harderian gland adenoma at or above 70 ppm, and local metaplasia in airway and olfactory epithelium at or above 140 ppm (male) and 70 ppm (female) in 40- and 80-week inhalation studies^{6,7)}. Uncertainty factors of 3 were applied considering that epoxide biotransformation was lower in humans than mice. A carcinogenicity classification of group 2B continued to be indicated.

Isopropyl acetate [CAS No.108-21-4] is a colorless liquid (boiling temperature 89°C; saturated vapor pressure 8.05 kPa (20°C)) with sweet fruity odor. It is used as a solvent for paint or print ink, a medical extractant, a food fragrance, a nail enamel and an enamel remover. The JSOH proposes 100 ppm as the OEL-M for isopropyl acetate, based on the results of an animal study and human volunteer experiments, to prevent effects on the eyes and nasal mucosa. In mice, increased incidence of slight atrophy in the nasal cavity was observed at or above 1000 ppm in a 2-year inhalation study (100-4000 ppm)⁸). Eye irritation was observed at concentrations as low as 200 ppm in a human volunteer study⁹).

Propyleneimine [CAS No. 75-55-8], or 2-methylaziridin, a colorless flammable liquid (boiling temperature 66°C; saturated vapor pressure 112 torr (14.93 kPa)) with an ammonia-like odor, is a reactive alkylating agent used for polymers and intermediates for packaging medium, adhesives, textiles, and calendaring production. The JSOH proposes 0.2 ppm (0.5 mg/m^3) as a revised OEL-M (from 2 ppm in 1967) based on the results of subsequent animal studies. Lowest-observed-adverse-effectlevel (LOAEL) in rats was considered 40 mg/m³ (17.6 ppm) based on observed effects of renal papillary injury and increase in urinary NAG¹⁰, as well as hind leg paralysis in week 17 with oral administration¹¹. Uncertainty factors of 100 were applied to account for LOAEL to NOAEL conversion and interspecies difference. Skin absorption notation and carcinogenicity classification of group 2B continued to be indicated.

Classifications on Carcinogenicity, Occupational Sensitizers, and Reproductive Toxicant

Regarding carcinogenicity classification, benzo[a]pyrene is proposed to be a group 1 carcinogen with limited epidemiological evidence but sufficient evidence in animal experiments and mechanistic studies. Proposed group 2A carcinogens are formaldehyde (no change), indium and compounds (inorganic, hardly soluble) (no change) and 1,3-propane sultone. Proposed 2B carcinogens are 1bromopropane, 3-chloro-2-methylpropene (no change), 2,4-D, DDT (no change), N,N-dimethyl-p-toluidine, molybdenum trioxide, perfluorooctanoic acid, polybrominated biphenyls (no change), and tetrafluoroethylene (no change). The reference values corresponding to an individual excess lifetime risk of cancer for vinyl chloride are proposed to be 1.5 ppm for 10^{-3} risk of cancer and 0.15 ppm for 10^{-4} , applying the relative risk model in reference to liver cancer mortality in Japan. Skin occupational sensitizer classifications for diethanolamine and ethyl acrylate are proposed as group 2, and that for isophorone diisocyanate as group 3. The reproductive toxicant classification for 2-ethyl-1-hexanol is proposed as group 3.

The latest OEL recommendations (2017-2018) will appear in the September issue of the Journal of Occupational Health (Volume 59, Number 5). A brief summary of the proposal will be posted at the society's website (htt ps://www.sanei.or.jp/oel-eng) in September.

Contributors: All authors contributed to draft preparation and deliberation of the proposals in committee. The corresponding author (TT) developed and finalized the article based on comments from all other authors' feedback.

Conflicts of interest: The committee declares that have no conflicts of interest.

References

- Johanson G, Kronborg H, Naslund PH, Nordqvist MB. Toxicokinetics of inhaled 2-butoxyethanol (ethylene glycol monobutyl ether) in man. Scand J Work Environ Health 1986; 12: 594-602.
- 2) Carpenter CA, Pozzani UC, Weil CS, Nair JH, Keck GA, Smyth HF Jr. The toxicity of butyl cellosolve solvent. AMA Arch Ind Health 1956; 14: 114-131.
- 3) Melnick RL, Sills RC, Roycroft JH, Chou BJ, Ragan HA, Miller RA. Isoprene, an endogenous hydrocarbon and industrial chemical, induces multiple organ neoplasia in rodents after 26 weeks of inhalation exposure. Cancer Res 1994; 54: 5333-5339.
- 4) NTP. Technical report on toxicity studies of isoprene (CAS No. 78-79-5) administered by inhalation to F344/N rats and B6C3F1 mice.
- 5) NTP Toxicity Report Series No. 31. Bethesda: US Department

of Health and Human Services; National Institutes of Health; 1995.

- 6) Placke ME, Griffis L, Bird M, Bus J, Persing RL, Cox LA Jr. Chronic inhalation oncogenicity study of isoprene in B6C3F1 mice. Toxicology 1996; 110: 253-262.
- Cox LA Jr, Bird MG, Griffis L. Isoprene cancer risk and the time pattern of dose administration. Toxicology 1996; 113: 263-272.
- B) Japan Bioassay Research Center. Summary of Inhalation Carcinogenicity Study of Isopropyl Acetate in B6D2F1 Mice. [Online]. March 2009. Available from: URL: http://anzeninfo. mhlw.go.jp/user/anzen/kag/pdf/gan/0611_MAIN.pdf
- 9) Silverman L, Schulte HF, First MV. Further studies on sen-

sory response to certain industrial solvents vapors. J Ind Hyg Toxicol 1946; 28: 262-266.

- Halman J, Miller J, Fowler JS, Price RG. Renal toxicity of propyleneimine: assessment by non-invasive techniques in the rat. Toxicology 1986; 41: 43-59.
- Weisburger EK, Ulland BM, Nam J, Gart JJ, Weisburger JH. Carcinogenicity tests of certain environmental and industrial chemicals. J Natl Cancer Inst 1981; 67: 75-88.

Journal of Occupational Health is an Open Access article distributed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view the details of this license, please visit (https://creativecommons.org/licenses/by-nc-sa/4.0/).